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Abstract. Diffusion in a one-dimensional random force field leads to interesting localization
effects, which we study using the equivalence with a directed walk model with traps. We
show that although the average dispersion of positions〈x2〉 − 〈x〉2 diverges for long times, the
probability that two independent particles occupy the same site tends to a finite constant in the
small bias phase of the model. Interestingly, the long-time properties of this off-equilibrium,
ageing phase is similar to the equilibrium phase of the random energy model.

1. Introduction

The properties of random walks in random environments can be markedly different from
those of homogeneous random walks [1]. For example, the typical distance travelled by a
diffusing particle in an unbiased random force field in one dimension grows with time as
x ∝ log2 t , instead of the usual

√
t law [2]. This is due to the fact that the potential energy

typically grows as
√
x, leading to very high barriers which slow down the progression of

the particle. More strikingly, Golosov has shown that the relative distance between two
independent particles in the same random force field remainsfinite even for large times
[3], whereas it also grows as

√
t in a homogeneous medium. This remarkable classical

localization phenomenon is due to the fact that the ‘best’ potential minimum which can be
reached by the particles after a long timet is so much better than the ‘second best’ that all
the particles have time to gather there, before eventually moving to an even better location.

In the presence of a non-zero average biasF0 > 0, several regimes must still be
distinguished. For small enoughF0, the mean position of the particles grows astµ, where
the exponentµ < 1 is proportional toF0 [1, 4–6]. Beyond a critical force, the particles
move to the right with a non-zero velocity. However, the dispersion around the mean
velocity is still anomalous untilµ reaches the valueµ = 2. Beyondµ = 2, the spreading
is ‘normal’, i.e. Gaussian with a width growing as

√
t . The question we wish to address

in this paper is whether the Golosov phenomenon survives in the presence of a non-zero
average force. We shall actually show that different ‘localization’ criteria lead to different
answers: while the average width of a packet of independent particles diverges with time,
there is a finite probability (even at long times) that two particles are nearby in space. The
physical picture is that the density of particles is concentrated on a finite number of sites,
but the relative distance between these peaks grows with time. As we shall also discuss,
there is a strong analogy between this problem and the low-temperature phase of Derrida’s
random energy model [7].
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2. Model and simulation

Actually, one can map the long-time behaviour of the problem onto that of a much simpler
directed walk model [1, 6, 8, 9], where each particle hops to the right on an even-spaced
discrete lattice, with a site-dependent hopping rateWn distributed as

ρ(W) = 1

0(µ)
Wµ−1e−W . (1)

For µ < 1 the average trapping time1/W is infinite, this leads to the anomalous
behaviour of the particles average position reported above. The probability to find the
particle on siten obeys the following master equation:

dPn(t)

dt
= −WnPn(t)+Wn−1Pn−1(t). (2)

The properties of equation (2) were discussed in detail in [9, 10]. In particular, one can
compute the average position of the particle, defined as

〈x(t)〉 ≡
∞∑
n=0

nPn(t) (3)

where the overbar denotes the average over theW ’s. For µ < 1, one easily finds
〈x(t)〉 = sin(πµ)/[πµ0(µ + 1)]tµ at large times [1]. One can also compute the average
width 12 of the packet, defined as

12 ≡ 〈x2〉 − 〈x〉2 ≡
∞∑
n=0

n2Pn(t)−
( ∞∑
n=0

nPn(t)

)2

. (4)

As shown in [9], the width grows to infinity as

12 = C(µ)t2µ (5)

whereC(µ) is a certainµ-dependent number which can be explicitly computed [9], and
which goes to zero forµ = 0. Naively, this means that the particles’ relative positions
become further apart (forµ > 0) ast becomes large, at variance with Golosov’s result for
the unbiased case, which shows that〈x2〉 − 〈x〉2 remains finite for larget . However, one
can still ask the following question: what is the total probability that two particles, initially
at siten = 0, occupy the same site after timet? This is obtained as

Y2(t) =
∞∑
n=0

P 2
n (t). (6)

The notationY2 is introduced in analogy with spin glasses, where the same question is
asked about two copies (replicas) of the same system in equilibrium, and it measures the
probability that these two copies occupy the same state [11]. Note thatY2 is also often taken
to be an indicator of localization in quantum problems, wherePn = |ψn|2 is the quantum
probability of presence [12]. One can actually study generalized objects, such as

Yq(t) =
∞∑
n=0

P qn (t) (7)

which measure the probability thatq particles occupy the same site. We have numerically
studiedY2 andY3 using Monte Carlo methods for the problem defined by equations (1) and
(2). In figure 1, we show the average valueY2(t) as a function oft for µ = 0.4< 1. This
quantity clearly tends to a non-zero constanty2(µ), which we plot as a function ofµ in
figure 2, together with our theoretical prediction (see below).
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Figure 1. Time evolution of the quantityY2(t) in the Monte Carlo simulation of a directed
random model with hopping rates distributed according to a gamma distribution of indexµ = 0.4.
The simulation was carried out in a 20 000 point lattice with 1000 particles and averaged over
250 disorder samples. Until the last observation times more than 99% of the particles remained
within the lattice. This curve shows thatY2(t) tends to a non-zero constant for asymptotic times.

Figure 2. y2 versusµ as given by numerical simulations (small circles), the analytic formula
obtained in the text (full curve) and by the equilibrium result of the associated random energy
model, y2 = 1 − µ, (dotted curve). The agreement with the theoretical prediction is good,
except for values nearµ = 1: the observation time being finite, we expect to overestimatey2(µ)

increasingly more the closer one gets toµ = 1 since the approach to the actual asymptotic value
becomes very slow (logarithmic) forµ = 1.

We see thaty2(µ→ 0) = 1, as expected from Golosov’s results, while we observe the
tendencyy2(µ→ 1)→ 0, although our numerical data is biased in this limit. In figure 3,
we show the parametric plot ofy3(µ) (i.e. the asymptotic value ofY3(t)) versusy2(µ).
Interestingly, the resulting curve is seen to be very close toy3 = y2(1+ y2)/2 obtained
within the so-called ‘one-step replica symmetry breaking’ solution of equilibrium random
systems.

Before giving a more detailed physical interpretation of these results, we first turn to an
analytic calculation ofy2(µ).
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Figure 3. Representation ofy3 versusy2 as obtained from our simulation (small circles) and as
given by the relationy3 = y2(1+y2)/2, characteristic of replica symmetry breaking (full curve).
The agreement is remarkable and hints to some deep relation between the present dynamical
problem and the equilibrium phase of disordered systems.

3. Analytic derivation of y2(µ)

This section contains rather technical details which can be skipped in a first reading. The
physical discussion can be found in the next section.

In the trapping model that we study, the time that the particle sojourns in theith trap is
given byti = uiτi whereτi is the characteristic trapping time of theith trap (τi = W−1

i ) and
ui is an exponentially distributed variable accounting for the individual thermal behaviour of
the particle. It is then straightforward to write the following equation for the probability of
a particle being at siten at time t , given a realization of the disorder{τi} (or, equivalently,
{Wi}):

Pn(t) =
∫ n∏

i

dui exp

(
−

n∑
j

uj

)
θ

(
t −

n−1∑
i

uiτi

)
θ

( n∑
i

uiτi − t
)

(8)

θ being the Heaviside function. Equation (8) says thatPn(t) is the sum of the probabilities
of all the possible thermal histories such that the particle has already maden− 1 jumps up
to time t but not yetn. Since the local residence times are exponentially distributed with
ratesWn, Pn as given in (8) is a solution of equation (2).

We are interested in the probability that two particles, starting together att = 0 remain
at the same site after a sufficiently long time. Therefore, the quantity of interest is the
probability that two particles are at siten at time t :

P 2
n (t) =

∫ n∏
i

dui dvi exp

(
−

n∑
j

(uj + vj )
)
θ

(
t −

n−1∑
i

uiτi

)
θ

( n∑
i

uiτi − t
)

×θ
(
t −

n−1∑
i

viτi

)
θ

( n∑
i

viτi − t
)

(9)

or, in the Laplace domain,

P 2
n (E) =

∫ n∏
i

dui dvi exp

(
−

n∑
j

(uj + vj )
)∫ min(

∑n
i ui τi ,

∑n
i vi τi )

max(
∑n−1

i ui τi ,
∑n−1

i vi τi )

e−Et dt. (10)
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Integrating and usingθ functions we can rewrite this last expression as

EP 2
n (E) = 2

∫ n∏
i

dui dvi

{[
exp

(
− E

n−1∑
i

uiτi

)
− exp

(
− E

n∑
i

uiτi

)]

×θ
( n−1∑

i

(ui − vi)τi
)
θ

( n∑
i

(vi − ui)τi
)
θ

( n∑
i

uiτi −
n−1∑
i

uiτi

)

+
[

exp

(
− E

n−1∑
i

uiτi

)
− exp

(
− E

n∑
i

viτi

)]
θ

( n−1∑
i

(ui − vi)τi
)

×θ
( n∑

i

(ui − vi)τi
)
θ

( n∑
i

viτi −
n−1∑
i

uiτi

)}
exp

(
−

n∑
j

(uj + vj )
)

(11)

where the threeθ ’s in each summand implement the maximum condition in the lower
limit of the integral, the minimum condition in the upper limit and the condition that the
upper limit is greater than the lower limit in (10), respectively. In (11) we have also used
the symmetrical integration with respect toui andvi to somewhat simplify the expression
(whence the factor 2).

It can now be proved that expression (11) is equivalent to a much simpler formula,
where only oneθ function appears per summand and this is accomplished by conveniently
renamingui ↔ vi as integration variables for some terms and by bearing in mind thatui ,
vi , andτi are all positive, whence the summations are all monotonous increasing functions
of the step numbern. This procedure leads to

EP 2
n (E) = 2

∫ n∏
i

dui dvi exp

(
−

n∑
i

(ui + vi)
)

×
[

exp

(
− E

n−1∑
i

uiτi

)
θ

( n−1∑
i

(ui − vi)τi
)

− exp

(
− E

n∑
i

uiτi

)
θ

( n∑
i

(vi − ui)τi
)

− exp

(
− E

n−1∑
i

uiτi

)
θ

( n−1∑
i

uiτi −
n∑
i

viτi

)

+ exp

(
− E

n∑
i

uiτi

)
θ

( n−1∑
i

viτi −
n∑
i

uiτi

)]
. (12)

In order to proceed we now use the following representation of theθ function in the
complex plane

θ(x) = − i

2π

∫ ∞
−∞

eiλx

λ
dλ (13)

and (12) turns into

EP 2
n (E) = −

i

π

∫ ∞
−∞

dλ

λ

∫ n∏
i

dui dvi exp

(
−

n∑
i

(ui + vi)
)

×
[

exp

(
−

n−1∑
i

[Eui − iλ(ui − vi)]τi
)
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− exp

(
−

n∑
i

[Eui − iλ(vi − ui)]τi
)

− exp

(
−

n−1∑
i

[Eui − iλ(ui − vi)]τi
)

e−iλvnτn

+ exp

(
−

n−1∑
i

[Eui − iλ(vi − ui)]τi
)

e−(E−iλ)unτn

]
. (14)

This formulation of the equation permits the factorization, within each summand, of the
contributions of each dui dvi so as to obtain

EP 2
n (E) = −

i

π

∫ ∞
−∞

dλ

λ

[ n−1∏
i

∫
du dv e−u−ve−[Eu−iλ(u−v)]τi

−
n∏
i

∫
du dv e−u−ve−[Eu−iλ(v−u)]τi

−
∫

dvn e−(1+iλτn)vn
n−1∏
i

∫
du dv e−u−ve−[Eu−iλ(u−v)]τi

+
∫

dun e−(1+Eτn+iλτn)un
n−1∏
i

∫
du dv e−u−ve−[Eu−iλ(v−u)]τi

]
. (15)

If we now define the following functions

F(E, λ) =
∫

du dv e−u−ve−[Eu−iλ(u−v)]τi (16)

G(E, λ) =
∫

du e−ue−(Eu+iλu)τi (17)

where the bar over the exponential represents the average over the possible values ofτi ,
the disorder average of (15) is readily written as

EP 2
n (E) = −

i

π

∫ ∞
−∞

dλ

λ
{[1−G(0, λ)]F(E, λ)n − [F(E,−λ)−G(E, λ)]F(E,−λ)n}.

(18)

We now sum (18) for all the values ofn in order to obtain the functionY2(E):

Y2(E) = −i

π

∫ ∞
−∞

dλ

λ

[
1−G(0, λ)
1− F(E, λ) −

F(E,−λ)−G(E, λ)
1− F(E,−λ)

]
. (19)

Sinceτi = W−1
i the functionsF(E, λ) andG(E, λ) can be expressed in terms of the

distribution of hopping ratesρ(W):

F(E, λ) =
∫ ∞

0
dW ρ(W)

W

W + E − iλ

W

W + iλ

= 1− λ2

E − 2iλ

∫ ∞
0

dW
ρ(W)

W + iλ
− (E − iλ)2

E − 2iλ

∫ ∞
0

dW
ρ(W)

W + E − iλ
(20)

G(E, λ) =
∫ ∞

0
dW ρ(W)

W

W + E + iλ

= 1− (E + iλ)
∫ ∞

0
dW

ρ(W)

W + E + iλ
. (21)
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Using these expressions in (19) we obtain, after some algebra,

EY2(E) = 2

π

∫ ∞
0

Re

[
f (iEu)− f (E − iEu)

u2f (iEu)+ (1− iu)2f (E − iEu)
(1− iu)

]
du (22)

the functionf (z) being given by the integral

f (z) =
∫ ∞

0
dW ρ(W)

1

W + z .
The result (22) is now straightforwardly applied to the relevant distribution of hopping

rates ρ(W). For instance, it is reassuring to see that for a non-disordered lattice,
ρ(W) = δ(W −W0), equation (22) yields

Y2(t) ' 1

2
√
πW0t

which can be obtained directly since the two particles are independent, and this means that
the probability that the two particles are on the same site is inversely proportional to the
typical distance.

For the case that we are exploring here, we focus on a distribution of the kind (1),
whence the functionf (Ez) turns out to be

f (Ez) =
∫ ∞

0
dW

Wµ−1e−W

0(µ)

1

W + Ez ' E
µ−1

∫ ∞
0

dx
xµ−1

0(µ)

1

x + z
assuming in the last equality thatE is sufficiently small so as to neglect the factor e−Ex

within the integral. Some further developments making use of the definition of gamma
functions allow one to find

f (Ez) ' 0(1− µ)Eµ−1zµ−1 asE→ 0.

Introducing this expression in (22) we finally obtain

EY2(E) ' 2

π

∫ ∞
0

Re

[
(iu)µ−1− (1− iu)µ−1

(1− iu)µ+1− (iu)µ+1
(1− iu)

]
du (23)

which is indeed a finite integral when 0< µ < 1. Equation (23) can now be trivially
transformed to the time domain again and we obtain aµ-dependent constant asymptotic
result:

y2(µ) = 2

π

∫ ∞
0

Re

[
(iu)µ−1− (1− iu)µ−1

(1− iu)µ+1− (iu)µ+1
(1− iu)

]
du. (24)

We have calculated (24) numerically for different values ofµ in the interval of interest and
we have compared the results with the data obtained from the simulation in figure 2. The
agreement is quite good except for values nearµ = 1, where the results of the simulation
turn out to be less reliable because of the slow relaxation to the actual asymtotic value in
(24).

4. Discussion

How can one reconcile the fact that, at the same time, the typical distance between two
particles grows with time (astµ) and that the probability to find them at the same site tends
to a finite constant? The physical picture is that of figure 4, where the probabilityPn(t) is
shown for a single sample and a fixedt . One sees that this probability distribution is made up
of several sharp peaks that gather a finite fraction of the particles. However, the position of
these peaks is scattered on a region of space of widthtµ. As time progresses, the position and
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Figure 4. Distribution of probability after a timet = 7× 1010W
−1

for a particular sample of
disorder in our one-dimensional directed random walk model withµ = 0.4. The simulation was
carried out with 1000 particles in a lattice of 20 000 sites.

relative weights of these peaks of course change, but at any given (large) time only a finite
number of peaks, corresponding to very large trapping times, contain most of the particles.
This is clearly related to the fact that, for a given particle, most of its life was spent in the
deepest ‘trap’ encountered up to timet [13, 14]. This behaviour is typical of the Lévy sums:
whenµ < 1 the sum of individual trapping times is dominated by the largest one. There is
also a strong connection with the physics of the random energy model in its low-temperature
(glassy) phase. The distribution of Boltzmann weights (which are also the residence times
within each state) is again a power law with an exponentµ < 1, whence only a finite (but
random) number of states contribute to the full partition function [15, 16], and the probability
that two independent copies of the same system occupy the same state is finite (and equal,
on average, toy2 = 1−µ). As discussed in detail in [16], this is in turn related to ‘replica
symmetry breaking’. All theyq ’s can be computed and one finds, in particular,y3 = y2(y2+
1)/2. As explained above, we find analytically thaty2 6= 1− µ in the dynamical model,
which means that the system can never be considered in equilibrium, although the dynamics
becomes slower with time [17]. At the same time, however, the equilibrium relation
y3 = y2(y2+1)/2 appears to be fulfilled (see figure 3), suggesting that some kind of pseudo-
equilibrium can be defined, for which equilibrium methods such as the replica method could
be applied. It would be interesting to extend the method of the previous paragraph to
calculate all theyq ’s exactly, and to check whether they agree with the replica prediction.

Finally, it is interesting to note that the above biased model exhibits ageing effects
whenµ < 1 [18, 13, 19, 20]. In this context, a classification of different ageing models
was proposed in [21], in terms of the asymptotic ‘clone overlap’ function. The idea is
to look at the evolution of two identical systems (replicas), driven by the same thermal
noise until t = tw, and by independent thermal noise for later times. The two replicas
can either separate with time (type I ageing), or remain close even after infinite time (type
II ageing). One sees from the above example that, depending on the way in which one
measures the ‘closeness’ of the two particles, one concludes differently. This situation
is reminiscent of the quantum localization model introduced in [22], where states are (in
certain regions of parameter space) both extended and localized, depending on the property
which is studied. The physical nature of these quantum mixed states is actually very similar
to the one discussed above.
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